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This paper is concerned with the identification of linear time-varying systems. The
discrete-time state space model of freely vibrating systems is used as an identification model.
The focus is placed on identifying successive discrete transition matrices that have the same
eigenvalues as the original transition matrices. First a typical subspace-based method is
presented to illustrate the extraction of the observability range space using the singular
value decomposition (SVD) of a general Hankel matrix. Then, the identification of varying
transition matrices is approached by using an ensemble of response sequences. For
arbitrarily varying systems, a series of the Hankel matrices are formed by an ensemble set
of responses which are obtained through multiple experiments on the system with the same
time-varying behavior. The varying transition matrix at each moment is estimated through
the SVD of two successive Hankel matrices. The proposed algorithm is applied to two
special cases that require only a single response series, i.e., periodically varying systems and
slowly varying systems. The use of the eigenvalues of the transition matrices is discussed
and the pseudomodal parameters are defined. Finally, a two-link manipulator subjected to
a varying end force is used as an example to illustrate the tracking capability and
performance of the proposed algorithm.
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1. INTRODUCTION

Linear time-varying (LTV) systems have been frequently used to model systems that have
non-stationary properties and undergo small magnitude vibrations. The identification of
LTV systems has received increasing attention. In electrical engineering, many studies on
the identification of varying systems have been reported [1]. Early attempts in this direction
simply extended the identification techniques of linear time-invariant (LTI) systems to
short length outputs of slowly varying (quasi-stationary) systems [2]. Adaptive methods
use recursive algorithms to minimize the output error of a parametric system model whose
parameters change with time [3]. To improve the tracking ability, the varying parameters
of a model are assigned to have a known structure such as a time polynomial or a series
of harmonics terms. This way, the problem becomes the estimation of the coefficients of
the known structure [4, 5]. In reference [6], the above methods are called the first class
approach, namely, the use of a single time sequence of input and output quantities. The
second class approach is called ensemble methods which employ multiple input and output
sequences, each exhibiting the same underlying time-varying behavior [6–8]. Ensemble
methods make it possible to use standard time-invariant system identification techniques
because the input and output data are chosen from the same point in the system variation,
across an ensemble of responses, rather than over the time course of a single response.

On the other hand, in mechanical engineering, studies of LTV systems have been wide
spread. The parametric excitation problems have been investigated by many researchers
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[9–12]. The response bound problem of systems with stochastic parameters was addressed
in reference [13]. The forced responses of a slowly varying system were investigated in
references [14, 15]. A systematic study of LTV mechanical systems was conducted in
reference [16]. A time-limited varying pattern was studied in reference [17] and several
identification methods of such variation were investigated. However, it is noted that the
identification of LTV systems remains a relatively inactive area that deserves more
attention.

Modelling a LTV system is another important issue in identification. An ARMA
(autoregressive, moving average) model with varying coefficients is a popular choice in
using the adaptive estimate methods [3–5]. The varying kernel function or two-dimensional
impulse function provides another alternative [18]. Since these models were originally
proposed for scalar (single-input and single-output) systems, the use of them is quite
cumbersome in the case of multivariable systems. Therefore, the preferred model for more
complex problems is a state space model. The popularity of the state space model is also
due to the recent development in the subspace-based methods for state space model
realization. In the case of LTI systems, the subspace methods can provide accurate state
space models for multivariable LTI systems directly from input-output data [19–21].

In the past decade, the subspace methods have been employed to construct so-called time
domain state space identification methods in the modal testing community. The
Eigensystem Realization Method (ERA) [22] obtained a state space model from Markov
parameters. The method used the singular value decomposition ( SVD) of the Hankel
matrix to extract the observability and controllability matrices. The recursive form of ERA
proposed in reference [23] extracted the observability range space using the QR
decomposition. The Observability Range Space Extraction (ORSE) identification
algorithm [24] was developed by generalizing the Q-Markov Covariance Equivalent
Realization (Q-Markov Cover) [25] and the ERA identification algorithms. Comparison
of several system identification methods was presented in reference [26]. A SVD-based
identification method and the several important uses of the SVD were discussed in
reference [27]. However, all the aforementioned studies have been limited to the
identification of LTI systems.

Some efforts have been made in extending the subspace-based methods to LTV systems.
In reference [7], a solution was presented to identify a state space model from a collection
of impulsive responses, each being the response to an input impulse given at consecutive
time instances. The work reported in reference [8] extended this solution to the
identification of a state space model from an ensemble of input and output data. The study
presented in this paper discusses a subspace-based algorithm that uses free responses to
identify successive discrete transition matrices of LTV systems. With respect to the
previous work, the present paper has two main features: first the focus of the study is
placed on finding an identification algorithm that guarantees the invariability of the
eigenvalues of the estimated transition matrix. This characteristic differentiates the
proposed method from the method proposed in reference [8]. The method in reference [8]
results in transition matrices that satisfy the similarity transformation but no longer share
the eigenvalues of the original transition matrices. Second, the study is motivated to extend
the modal concepts of LTV systems. It proposes the concept of the pseudomodal
parameters that are determined from the eigenvalues of the varying transition matrix. The
paper explores the use of the pseudomodal parameters to characterize LTV systems.

The paper is organized as follows. Section 2 introduces a SVD-based method for the
identification of time-invariant discrete-time state space model using free responses. The
first part of section 3 develops an algorithm to identify the discrete transition matrices of
arbitrarily time-varying systems using an ensemble of response sequences. The second part
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of section 3 extends the proposed algorithm to two special time-varying systems which
require only a single response sequence. Section 4 discusses how to use the eigenvalues of
the estimated transition matrices to characterize properties of LTV systems. Section 5
presents an example to illustrate the use of the proposed method. Section 6 is a brief
conclusion.

2. IDENTIFICATION OF TIME-INVARIANT SYSTEMS

The state space representation of a p/2-degree-of-freedom linear time-invariant and
freely vibrating system is given by

ẋ(t)=Ax(t), x(0); y(t)=Cx(t), (1)

where x(t)$Rp is the state variable vector, x(0) is the initial state, A$Rp× p is the constant
parameter matrix, C$Rn× p is the constant matrix, and y(t)$Rn is the response vector. The
corresponding discrete-time state space model is of the form

x(k+1)=Gx(k), x(0); y(k)=Cx(k), (2)

where G$Rp× p is the state transition matrix given by

G=exp(ADt), (3)

where Dt is the sampling interval. The solution of equation (2) is

y(k)=Cx(k)=CGkx(0). (4)

The description of equation (2) is not unique. Let T$Rp× p be any non-singular matrix
and define a new state vector z=Tx. Replacing x by T−1z in equation (2) results in

z(k+1)=G�z(k), y(k)=C�z(k), (5)

where G� =TGT−1 and C� =CT−1 are said to be similarly equivalent to G and C,
respectively. One of the important properties of the similarity transformation is that of
G and G� share the same eigenvalues, i.e.,

G=VLV−1 or G� =(TV)L(TV)−1, (6)

where V is the eigenvector matrix and L is the diagonal eigenvalue matrix, i.e.,

L=diag(l1 , l2 , . . . , lp ). (7)

For underdamped mechanical structures, the p eigenvalues and eigenvectors occur in pairs
to represent p/2 natural modes of vibration. Therefore, the eigenvalues are arranged in
such a way that li = l*i+ p/2 = exp(−diDt+jvdiDt), where di is the ith damping factor and
vdi is the ith damped natural frequency, and j=z−1.

A block Hankel matrix is formed as

y(0) y(1) · · · y(N−1)

y(1) y(2) · · · y(N)
H(0)=G

G

G

K

k

···
···

···
···

G
G

G

L

l

. (8)

y(M−1) y(M) · · · y(N+M−2)

The number M of block rows of H(0) is chosen to be greater than N, i.e., MqN and
N is greater than the upper bound of the system order p. Using the relation of equation
(4), the Hankel matrix can be factored as
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H(0)=GX, (9)

where

C

CG
G=G

G

G

K

k

···
G
G

G

L

l

(10)

CGM−1

is the observability matrix of the system, and

X=[x(0) x(1) · · · x(N−1)] (11)

is a state matrix. It is noted that G has a so-called shift invariance structure. Specifically,
define two submatrices G2 and G1 which are obtained from G by deleting the first and last
block rows, respectively. It is then easy to see that the transition matrix G is the
transformation that maps G1 onto G2 , i.e.,

G1G=G2 . (12)

Therefore an estimate of G can be obtained by solving

G=G+
1 G2 , (13)

where (·)+ denotes the Moore–Penrose pseudo inverse.
The key of the subspace methods is to extract the observability range space. If the matrix

G� has the same range space as that of G, such a matrix can be written as

C�
C�G�

G� =GT−1 =G
G

G

K

k

···
G
G

G

L

l

, (14)

C�G�M−1

where T$Rp× p is some non-singular matrix. Apparently the first block row of G� can be
used as C� . Partitioning G� into G�1 and G�2 as before and invoking equation (13) results in

G� =G�+
1 G�2 . (15)

There are several methods to retrieve the observability range space. The most commonly
used one is the singular value decomposition (SVD) [28]. The popularity of the SVD lies
in its numerical stability. This feature is briefly discussed below. The measured responses
are corrupted by noise such that

ŷ(k)= y(k)+w(k), k=0, 1, 2, . . . , L−1, (16)

where ŷ(k) is the measured response vector and w(k)$Rn×1 is a noise vector. Now the
general Hankel matrix formed by the noisy responses becomes

H
 (0)=H(0)+W(0). (17)

Conducting the SVD to H
 (0) yields

H
 (0)=USVH, (18)

where (·)H denotes the Hermitian transpose. The matrices U$RnM× nM and V$RN×N are two
orthogonal matrices that are called the left and right singular vector matrices, respectively.
The matrix S$RnM×N can be partitioned as



  491

S=$Sr

0
0
0%, (19)

where Sr =diag (s1 , . . . , sr ) with s1 e · · ·e sr e 0. The number si is called the ith
singular value. When the responses are free of noise, r is equal to p. When the data are
corrupted by noise, r equals min(N, M). The SVD of H
 (0) can be further partitioned as

H
 (0)=USVH = [Up Uw ]$Sp

0
0
Sw%$VH

p

VH
w%, (20)

where Up is formed using the first p columns of U and Uw using the rest columns of U.
The matrices Vp and Vw are formed in a similar manner using V. When the signal-to-noise
ratio (SNR) is high or moderate, the diagonal matrix Sp contains the first p significantly
large singular values and Sw the rest, smaller singular values. There can sometimes be real
difficulties in determining a ‘‘gap’’ between the significantly large singular values and
significantly small singular values. Various criteria have been suggested [29]. Using
equation (20), the covariance matrix H
 H
 H can be written as

H
 H
 H =US2UH =Up S
2
p UH

p +Uw S2
w UH

w . (21)

On the other hand

H
 H
 H =HHH +WHH +HWH +WWH. (22)

If the measurement noise is zero-mean white noise and uncorrelated with the true response,
in the limiting case the following relations exist:

lim
N:a

1
N

HHH =G0lim
N:a

1
N

XXH1GH, lim
N:a

1
N

WHH = 0, lim
N:a

1
N

HWH = 0,

lim
N:a

1
N

WWH = s2I, (23)

where XXH is the covariance matrix of the state vector, s2 is the noise variance, and I is
a unit matrix. Equating equations (21) and (22) in the limit results in

lim
N:a

1
N

Up S
2
p UH

p + lim
N:a

1
N

Uw S2
w UH

w =G0lim
N:a

1
N

XXH1GH + s2I. (24)

The above analysis indicates that, for a sufficiently long data length N, the following
approximation holds:

Up S
2
p UH

p 1G(XXH)GH, (25)

which also shows that Up forms an orthonormal basis for the observability range space,
i.e., G� 1Up .

Among other subspace extraction algorithms, the classical Gram–Schmidt (CGS)
orthonormalization [28] is worth mentioning. This method was used to develop a recursive
form of the ERA algorithm in reference [23]. The Gram–Schmidt orthonormalization of
the columns of H
 produces a matrix factorization in the form

H
 =QR, (26)

where Q$RnM× nM is orthogonal and R$RnM×N is upper triangular. The first p columns of
Q can be used as the observability range space. The main advantage of the method is that
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the construction of Q and determination of the system order p are done recursively such
that the computer storage and time are drastically reduced. However, in terms of numerical
sensitivity to the noise, the SVD is better than the classical Gram–Schmidt method.

3. IDENTIFICATION OF TIME-VARYING SYSTEMS

The state space representation of a p/2-degree-of-freedom LTV and freely vibrating
system is given by

ẋ(t)=A(t)x(t), x(0), y(t)=C(t)x(t), (27)

where the parameter matrices A(t) and C(t) are time dependent. The following assumptions
are used in the study. The elements of A(t) and C(t) are bounded and have a finite number
of the first order discontinuous points within the interval of interest. The system is
asymptotically stable, i.e., y(t) approaches zero when t approaches infinity for any initial
condition x(0). The state dimension p is constant. The system is observable.

The corresponding discrete-time space state model becomes

x(k+1)=G(k+1, k)x(k), x(0); y(k)=C(k)x(k), (28)

where G(k+1, k) is referred to as varying state transition matrix. The observability of
LTV systems requires that G(k+1, k) be non-singular at any moment k [7]. Unlike
time-invariant systems, in general, no closed-form of the varying transition matrix
G(k+1, k) is known. Two important properties of G(k+1, k) are

G(k+1, h)=G(k+1, k)G(k, h), kq h; G(h, h)= I. (29)

The solution of equation (28) is given by

y(k)=C(k)G(k, 0)x(0). (30)

For LTV systems, the similarity transformation matrix is no longer constant. If
non-singular matrices T(k+1) and T(k)$Rp× p exist, the similarity transformation is
defined as

G� (k+1, k)=T(k+1)G(k+1, k)T−1(k), C�(k)=C(k)T−1(k), (31)

where G� (k+1, k) and C�(k) are another realization of the system. It should be noted that,
although G� (k+1, k) preserves the boundedness and stability of the transformed system,
normally, G� (k+1, k) and G(k+1, k) do not share the same eigenvalues. One of the
particular interests of this study is to find the eigenvalues of G(k+1, k). Therefore, it is
suggested that a matrix be introduced; defined as

G	 (k+1, k)=T(k)G(k+1, k)T−1(k). (32)

Apparently the matrix G	 (k+1, k) guarantees the invariability of the eigenvalues. In
general, the identification of C�(k), G� (k+1, k), and G	 (k+1, k) cannot be accomplished
through the data from a single experiment. In what follows, this problem is approached
by the so-called ensemble method.

3.1.       

Assume that N experiments have been conducted on the system whose parameters
undergo the same variation. The noise-free responses from the jth experiment are
represented by yj (k) where j=1, 2, . . . , N and k=0, 1, 2, . . . , L−1. A general block
Hankel matrix is formed using the M successive responses of N experiments:
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y1 (k) y2(k) · · · yN (k)

y1 (k+1) y2 (k+1) · · · yN (k+1)
H(k)=G

G

G

K

k

···
···

···
···

G
G

G

L

l

. (33)

y1 (k+M−1) y2 (k+M−1) · · · yN (k+M−1)

H(k) can be factored as

H(k)=G(k)[x1 (k) x2 (k) x3 (k) · · · xN (k)], (34)

where the observability matrix G(k) is of the form

C(k)

C(k+1)G(k+1, k)

G(k)=G
G

G

G

G

K

k

C(k+2)G(k+2, k) G
G

G

G

G

L

l

. (35)
···

C(k+M−1)G(k+M−1, k)

Its corresponding range space becomes

C�(k)

C�(k+1)G� (k+1, k)

G�(k)=G(k)T−1(k)=G
G

G

G

G

K

k

C�(k+2)G� (k+2, k) G
G

G

G

G

L

l

. (36)
···

C�(k+M−1)G� (k+M−1, k)

Apparently the shift invariance property no longer exists in a single observability matrix
G(k) or its range space G�(k). To extract G� (k+1, k), a successive Hankel matrix H(k+1)
is formed using the k+1 to k+M successive responses of N experiments. The matrix
H(k+1) can be factored as

H(k+1)=G(k+1) [x1 (k+1) x2 (k+1) x3 (k+1) · · · xN (k+1)], (37)

where G(k+1) has a similar form as equation (35) and its range space G�(k+1) is given
by

C�(k+1)

C�(k+2)G� (k+2, k+1)

G�(k+1)=G(k+1)T−1(k+1)=G
G

G

G

G

K

k

C�(k+3)G� (k+3, k+1) G
G

G

G

G

L

l

. (38)
···

C�(k+M)G� (k+M, k+1)

Now let G�1 (k+1) be the first M−1 block rows of G�(k+1) and G�2 (k) the last M−1
block rows of G�(k). The matrix G� (k+1, k) can be found by

G� (k+1, k)= [G�1 (k+1)]+G�2 (k). (39)

In a practical implementation, the SVD of these two successive Hankel
matrices formed by the noisy data results in H
 (k)=U(k)S(k)V(k)H and
H
 (k+1)=U(k+1)S(k+1)V(k+1)H. Let Up (k)1G�(k) and Up (k+1)1G�(k+1).
Forming Up1 (k+1) and Up2 (k) as before and invoking equation (39) results in

G� (k+1, k)= [Up1 (k+1)]+Up2 (k)=T(k+1)G(k+1, k)T−1(k). (40)
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However, because T(k) and T(k+1) are unavailable, the exact solution of G	 (k+1, k)
cannot be found. Instead an approximate solution for G	 (k+1, k) is proposed as follows.
If ne p, let the first block row of Up (k) be F(k) and the first block row of Up (k+1) be
F(k+1). It is easy to prove that the following relation exists

F+(k)F(k+1)=T(k) [CT(k)C(k)]−1CT(k)C(k+1)T−1(k+1). (41)

To ensure the existence of F+(k), C(k) must have full column rank. When nQ p, i.e., rank
(C(k))Q p, a remedy for this problem is given in Appendix A. Premultiplying G� (k+1, k)
with F+(k)F(k+1) yields

G	 (k+1, k)1F+(k)F(k+1)G	 (k+1, k). (42)

Apparently, the accuracy of the above approximation depends on the variability of C(k).
A computing procedure is summarized as follows: To identify C�(i), G� (i+1, i), and

G	 (i+1, i), i=0, 1, . . . , kf , start with i=0 and carry out the following:
(1) Form H
 (i). Conduct the SVD on H
 (i) to obtain U(i). Form Up2 (i) and F(i).
(2) Form H
 (i+1). Conduct the SVD on H
 (i+1) to obtain U(i+1). Form Up1 (i+1)

and F(i+1).
(3) Let F(i) be C�(i). Use Up1 (i) and Up2 (i+1) in equation (40) to find G� (i+1, i). Use

F(i), F(i+1), and G� (i+1, i) in equation (42) to find G	 (i+1, i).
(4) Store U(i+1) in U(i). If iQ kf −1, increase i by 1 and go to Step 2.

3.2.      

If only a single response sequence is available, the identification is possible in two special
cases, that is, periodically varying systems and slowly varying systems. In what follows,
these two cases are addressed briefly.

3.2.1. Periodically varying systems

Assume that PDt is the period of the parameter variation. The transition matrix of the
periodic system satisfies [30]

G(P+ k+1, P+ k)=G(k+1, k). (43)

The transformation matrix is also periodic, i.e.,

T(P+ k)=T(k). (44)

If the Hankel matrix is formed as

y(k) y(P+ k) · · · y((N−1)P+ k)

y(k+1) y(P+ k+1) · · · y((N−1)P+ k+1)
H(k)=G

G

G

K

k

···
···

···
···

G
G

G

L

l

,

y(k+M−1) y(P+ k+M−1) · · · y((N−1)P+ k+M−1)

(45)

it can be factored as

H(k)=G(k) [x(k) x(P+ k) x(2P+ k) · · · x((N−1)P+ k)], (46)

where G(k) has the same form as equation (35). Thus, the discussion following (35) in the
above subsection is also applicable here.
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3.2.2. Slowly varying systems

If the change in the parameters over any block of N time instants is small, the following
M×N(MqN) block Hankel matrix is constructed:

y(k) y(k+1) · · · y(k+N−1)

y(k+1) y(k+2) · · · y(k+N)
H(k)=G

G

G

K

k

···
···

···
···

G
G

G

L

l

. (47)

y(k+M−1) y(k+M) · · · y(k+N+M−2)

The columns of the above matrix can be factored as

y(k+ j)

y(k+ j+1)
G
G

G

K

k

···
G
G

G

L

l

=G(k+ j)x(k+ j), j=0, 1, 2, . . . , N−1, (48)

y(k+ j+M−1)

where

C(k+ j)

C(k+ j+1)G(k+ j+1, k+ j)
G(k+ j)=G

G

G

K

k

···
G
G

G

L

l

, j=0, 1, 2, . . . , N−1.

C(k+ j+M−1)G(k+ j+M−1, k+ j)

(49)

If the system is slowly varying, the following approximate relation can be justified:

G(k+1, k)1G(k+2, k+1)1 · · ·1G(k+N, k+N−1),

C(k+1, k)1C(k+2, k+1)1 · · ·1C(k+N, k+N−1), (50)

which means

G(k)1G(k+1)1 · · ·1G(k+N−1). (51)

Thus, the Hankel matrix may be approximately factored as

H(k)1G(k) [x(k) x(k+1) x(k+2) · · · x(k+N−1)]. (52)

Therefore, the algorithm presented in the previous subsection can be also applied here in
a similar manner.

3.3.   L,   N,     M

The total data length L is determined by the final desired transition matrix G	 (kf +1, kf ).
In the case of the ensemble data sequences, L= kf +M. In the case of periodic systems,
L=(N−1)P+ kf +M. In the case of slowly varying systems, L= kf +N+M−1.
From the noise reduction point of view, N is desired to be as large as possible in order
to improve the estimation accuracy. However what is the minimum number of N? In the
case of the ensemble data sequences, selection of N or number of experiments should
ensure that the rank of the Hankel matrix is greater than the upper bound of the system
order p. When a single data sequence is used, a larger N means a longer data length. For
slowly varying systems, to select N, several factors should be considered such as the upper
bound of the system order, the system variability, and the noise reduction by the SVD.
In general, a lower system variability allows to use a larger N. On the other hand, a larger
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N may not always improve the estimate accuracy. When multiple experiments are used,
a larger N makes it more difficult to ensure the column independence of the Hankel matrix.
When a single data sequence is used, a long data length causes a poor signal-to-noise ratio
near the tail of the record due to a quicker decay of higher modes. After N is chosen, in
general, M is selected to be greater than N. A simple reason is to guarantee that the rank
of H
 is greater than the upper bound of the system order.

4. EIGENVALUES OF THE VARYING TRANSITION MATRIX

Modal parameters have been used to characterize the global properties of LTI systems.
As pointed out previously, the modal parameters of LTI systems are related to the
eigenvalues of the transition matrix G� . However, for time-varying systems, the eigenvalues
and eigenvectors of the varying transition matrix G(k+1, k) or G	 (k+1, k) no longer have
such physical interpretation. Since the transition matrix G	 (k+1, k) is non-singular, its
eigendecomposition exists, i.e.,

G	 (k+1, k)=V(k+1, k)L(k+1, k)V−1(k+1, k), (53)

where, in analogy to LTI systems, V(k+1, k) is referred to as the pseudoeigenvector
matrix and L(k+1, k)=diag (l1 (k+1, k), . . . , lp (k+1, k)) is referred to as the
pseudoeigenvalue matrix. Because the elements of the G	 (k+1, k) are real, the complex
eigenvalues occur in pairs. If the ith eigenvalue is complex, then the following relation can
be employed:

li (k+1, k)= l*i+ p/2 (k+1, k)= exp(−di (k+1, k)Dt+jvdi (k+1, k)Dt), (54)

where di (k+1, k) and vdi (k+1, k) are referred to as the ith pseudodamping factor and
pseudodamped natural frequency, respectively. The use of the pseudomodal parameters
makes it possible to discuss the properties of varying systems in terms of modal parameters.
For example, the asymptotic stability requires that the eigenvalues of G	 (k+1, k) be within
the unit circle, i.e., di (k+1, k)e 0. If some of the eigenvalues are outside of the unit circle,
the system becomes unstable or temporarily unstable. If the system undergoes a limited
time variation, that is, from an old invariant status to a new invariant status, the
pseudomodal parameters constitute a transition from the old modal parameters to the new
modal parameters. If the system is a slowly varying one, the eigenvalues of G	 (k+1, k)
can be approximated by the so-called frozen poles that are the first order approximation
of the zeros of Zadeh’s transfer function [31]. The eigenvalues of the transition matrix over
a duration of time can also be used to describe the properties of the varying system over
this period. For the transition matrix from the moment k to the moment k+ i, an
eigendecomposition is written as

G	 (k+ i, k)=V(k+ i, k)L(k+ i, k)V−1(k+ i, k). (55)

In a similar manner, a pair of conjugate complex eigenvalues can be expressed as

li (k+ i, k)= l*i+ p/2 (k+ i, k)= exp(−di (k+ i, k)Dt+jvdi (k+ i, k)Dt). (56)

In the case of a periodic system, according to Floquet theory, the transition matrix over
a period is a constant matrix, i.e.,

G(k+P, k)=F or G	 (k+P, k)=G	 (k+P, k)=F	 , (57)

where F or F	 is a constant matrix. Therefore, the eigenvalues of G(k+P, k) or
G	 (k+P, k) are independent of k. These eigenvalues have been used to determine the
asymptotic stability of a periodic system in [30].
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5. AN ILLUSTRATIVE EXAMPLE

To illustrate the algorithm developed above, an example is presented in this section.
Shown in Figure 1, a planar two-link manipulator subjected to a varying end force is used
as the example. The links are assumed to be rigid. The elasticity of joints 1 and 2 is
represented by two constant rotational springs k1 and k2 . The system damping is assumed
to be viscous, constant, and concentrated at the joints. The damping coefficients at joints
1 and 2 are d1 and d2 , respectively. The angles 81 and 82 denote the angular positions of
the links relative to the x-axis. A time-varying force f(t) acts at the free end of the second
link, making the angle 83 with the x-axis. 83 is assumed to be constant during vibration
for simplicity. A detailed dynamic model and the stability of such system can be found
in reference [10]. For the sake of simplicity, it is assumed that the links of the manipulator
are uniform cylinders of equal length l and mass m. When an initial disturbance is applied,
the links vibrate around their equilibrium positions 810 and 820 . The actual angular
position of the links become 81 =810 +811 and 82 =820 +821 . With the assumption of
small angular vibrations, a linearized model for the system under the free vibration is
defined by the matrix equation

M8̈ +D8̇ +K(t)8= 0, (58)

where

M=$ a1

a2 cos (810 −820 )
a2 cos (810 −820 )

a3 %, D=$d1 + d2

−d2

−d2

d2 %,

K(t)=$k1 + k2 − a4 sin 810 − f(t)l cos (810 −83 )
−k2

−k2

k2 − a5 sin 820 − f(t)l cos (820 −83 )%,

8=[811 821 ]T, a1 =4ml2/3, a2 =ml2/2, a3 =ml2/3, a4 =3ml2g/2, a5 =ml2g/2.

If the state vector is defined as x=[8̇T, 8T]T, then the state space model of equation (27)
is obtained and the parameter matrix A(t) is of the form

Figure 1. A two-link manipulator subjected to a varying force f(t) at its free end.
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A(t)=$ 0
M

M
D%

−1

$−M
0

0
K(t)%. (59)

In the simulation, the following numerical quantities were used: the length l=1 m, the
mass m=1 kg, the stiffness k1 = k2 =80 Nm/rad, d1 = d2 =0·8 Nms/rad, the force
application angle 83 =90°. The testing configuration of the manipulator was set at 810 =0°
and 820 =90°. It was assumed that the system order p=4 was known and that the state
variables were directly available, i.e., C= I or y= x. The signal-to-noise ratio (SNR) is
defined as

SNR= syi /si , i=1, 2, 3, 4, (60)

where syi denotes the standard deviation of the ith response and si is the standard deviation
of the noise added to the ith response. In the actual implementation, first equation (58)
was numerically integrated using the Runge–Kutta method to find yi (k). Then syi was
found. Using a given SNR, si was determined by equation (60). Finally a standard
Gaussian white noise with a unit standard deviation was generated, multiplied by the value
si and added to yi (k) to produce the measured response ŷi (k)= yi (k)+wi (k). The true
transition matrices of the system under study were evaluated numerically using the method
given in Appendix A.

5.1.       

To test the algorithm using an ensemble of responses, let the force vary in a piecewise
pattern, that is,

f(t)= 8 f0

f0 −Df sin (p(t−0·5)/2t),
f0 −Df,

0E tE 0·5,
0·5E tE t+0·5,

t+0·5Q t,
(61)

where f0 =20 N and Df=10 N. The damped natural frequencies are vd1 =4·5304 rad/s,
vd2 =16·271 rad/s for the period of 0E tE 0·5 and vd1 =5·6459 rad/s, vd2 =16·834 rad/s
for the period of t+0·5Q t. Different experiments were obtained by disturbing the system
using different initial conditions. The 12 initial conditions used in the simulation are given
as

[x1 (0), x2 (0), . . . , x12 (0)]

1 0 0 0 −1·5 2 0 0 0 1 0 0

0 −1 0 0 0·5 −1 0 0 −1 0 0 0
=G

G

G

K

k
0 0 −0·1 0 0 0 0 −0·1 0 0 0·5 −0·1

G
G

G

L

l

.

0 0 0 0·1 0 0 0·1 0 0 0 −0·15 0·2

(62)

The initial conditions have been chosen to be independent of one another. The time
interval was chosen to be Dt=0·04 s. In what follows, the results of estimation is presented
in two ways: an average v̄di (k) of 10 estimates of the pseudodamped natural frequencies
at instant k and the sum Si of the standard deviation of the estimated values

v̄di (k)=
1
10

s
10

j=1

vdij (k), Si = s
l−1

k=0

si (k), i=1, 2, (63)
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Figure 2. The estimated pseudodamped natural frequencies and the true values when the system undergoes
a piecewise variation with t=3 s. (a) ——, true vd1 (k); · · · · · , v̄d1 (k) SNR=50; ·–·–·–· ·, v̄d1 (k) SNR=100;
- - - -, v̄d1 (k) SNR=150; (b) ——, true vd2 (k); · · · · · , v̄d2 (k) SNR=50; ·–·–·–· · , v̄d2 (k) SNR=100; - - - -, v̄d2 (k)
SNR=150.

where the standard deviation of the estimated pseudodamped natural frequencies is defined
as

si (k)=X 1
10

s
10

j=1

[vdij (k)− v̄di (k)]2, i=1, 2. (64)

First the tracking ability and the robustness of the algorithm are shown in Figures 2(a)
and (b). Figure 2(a) shows a comparison of the estimated first pseudo damped natural
frequencies with the true values. Figure 2(b) gives a comparison of the estimated second
damped natural frequencies with the true values. In the computation, t was chosen to be
3 s. The first six initial conditions in equation (62) were used to produce six experiments,
i.e., N=6. The block row number M was chosen to be 10. It is noted that the estimated
v̄d1 (k) and v̄d2 (k) follow the variation of the true values well. The fluctuation of the
estimated values reduces when SNR increases. To further demonstrate the capability of
tracking a fast variation, Figures 3(a) and (b) show a comparison of the estimated damped
natural frequencies and the true values when t was shortened to be 1 s. Again the similar
tracking ability and robustness are observed.

Figures 4(a) and (b) are used to show the effects of different N s. The index Si defined
above is employed as a condensed indicator of the estimate accuracy. A smaller Si

Figure 3. The estimated pseudodamped natural frequencies and the true values when the system undergoes
a piecewise variation with t=1 s. Key for (a) and (b) as for Figure 2.
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Figure 4. Relation between the index Si defined in equation (63) and N. (a) S1 versus N, (b) S2 versus N.

corresponds to a smaller fluctuation of the estimated values or a more accurate estimate.
The results in Figures 4(a) and (b) were obtained using the same conditions as those for
Figures 2(a) and (b) except that SNR was fixed to be 100 and N experiments were generated
using the first N initial conditions in equation (62). It is noted that the change of Si is not
monotonic. An increase of N first results in a decrease of Si and then a slight increase of
Si . Such a behavior indicates that a large N does not necessarily improve the estimate
accuracy. An explanation for this phenomenon is that a large N is likely to cause the
column dependence of the Hankel matrix if the initial conditions are not chosen properly.
The effects of altering M were also investigated. It has been noted that varying M has little
influence on Si .

A comparison of the SVD method and the CGS method is given in Figures 5(a) and
(b). The conditions for Figures 5(a) and (b) were the same as those for Figures 2(a) and
(b). Apparently the estimate accuracy of the SVD is better than that of the CGS method.
However, the CGS method significantly reduces the computational burden. This feature
becomes more attractive when the system order is large.

5.2.      

To create a periodic system, let the force follow a sinusoidal variation, i.e.,

f(t)= f0 −Df sin (2pt/t), (65)

Figure 5. Comparison of the estimates using the SVD and the estimates using the CGS. (a) ——, true vd1 (k);
- - - -, v̄d1 (k) using the SVD; · · · · · , v̄d1 (k) using the CGS; (b) ——, true vd2 (k); - - - , v̄d2 (k) using the SVD;
· · · · · , v̄d2 (k) using the CGS.
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Figure 6. The estimated pseudodamped natural frequencies and the true values when the system undergoes
a periodic variation with t=2 s. (a) ——, true vd1 (k); · · · · · , v̄d1 (k) SNR=50; - - - -, v̄d1 (k) SNR=100; (b)
——, true vd2 (k), · · · · · , v̄d2 (k) SNR=50; - - - -, v̄d2 (k) SNR=100.

where f0 =20 N and Df=10 N. The variation period was t=2 s, i.e., P=50. A response
series was generated by an initial condition x(0)= [0·1−0·1 0 0]T. The Hankel matrix
was formed by choosing M=10 and N=6. Figures 6(a) and (b) compare the averages
of the estimated pseudo damped natural frequencies with the true values. It is seen that
the estimated v̄d1 (k) and v̄d2 (k) track the parameter variation closely. As another way to
demonstrate the estimated results, the eigenvalues of G	 (50, 0) are shown in Figures 7 and
8. Figures 7(a) and (b) give 20 estimates of the first eigenvalue when N=6 and N=12,
respectively. Figures 8(a) and (b) give 20 estimates of the second eigenvalue when N=6
and N=12, respectively. It is seen that, with an increase of N, the estimated eigenvalues
become closer to the true values.

5.3.      

To create a slowly varying system, use the variation pattern defined by equation (61)
with Df=3 N and t=4 s. The block row number M was chosen to be 10. To show the
capability of the algorithm to follow the system variation, the pseudodamped natural
frequencies estimated using the noise-free responses are shown in Figures 9 (a) and (b).
The results using three different values of N are compared with the true values. As
expected, results show that the tracking ability of the algorithm is limited by N.

Figure 7. The estimated first eigenvalues of G	 (50, 0). (a) +, true; w, estimate when N=6; (b) +, true; w,
estimate when N=12.
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Figure 8. The estimated second eigenvalue of G	 (50, 0). (a) +, true; w, estimate when N=6; (b) +, true; w,
estimate when N=12.

6. CONCLUSIONS

The identification of linear time-varying and freely vibrating systems has been addressed.
A typical subspace-based technique for the model realization of linear time-invariant
systems has been introduced. For time-varying systems, the development of the
identification algorithm focuses on obtaining the varying transition matrix that shares the
same eigenvalues as the original transition matrix. A key step of the proposed algorithm
is to form a series of the general Hankel matrices using an ensemble of response sequences.
Then the singular value decomposition is used to extract observability range spaces. The
shift invariance structure preserved in two successive extracted subspaces is utilized to
estimate the varying transition matrix at a moment. An approximate operation is
conducted to ensure the invariability of the eigenvalues of the estimated transition matrix.
The proposed algorithm has been extended to two special cases that require only a single
response sequence, that is, periodically varying systems and slowly varying systems. The
use of the eigenvalues of the estimated transition matrices has been discussed. The
pseudomodal parameters have been defined by analogy to time-invariant systems. The
physical interpretation of the pseudomodal parameters has been presented. Finally, an
example of a two-link robot subject to a varying end force has been used to illustrate the
proposed algorithms. The simulation has shown that the estimated pseudodamped natural

Figure 9. The estimated pseudodamped natural frequencies of the slowly varying system using the single
noise-free response. (a) ——, true vd1 (k); · · · · · , estimated vd1 (k) with N=6; ·–·–·–· , estimated vd1 (k) with
N=9; - - - -, estimated vd1 (k) with N=12; (b) ——, true vd2 (k); · · · · · , estimated vd2 (k) with N=6; ·–·–·–·,
estimated vd2 (k) with N=9; - - - -, estimated vd2 (k) with N=12.
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frequencies have a satisfactory tracking ability and the algorithm is adequately robust
when the signal-to-noise is high or moderate.
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APPENDIX A: MATRIX FORMULATIONS AND EVALUATION

A.1.     F+
1 (k)F2 (k+1)  nQ p

To find an approximate matrix for F+
1 (k)F2 (k+1) when nQ p, first determine the

number of block rows using

nr =Ceil(p/n), (A1)

where Ceil(·) means to take the smallest whole number that is not less than p/n. Then let
the first nr block rows of Up (k) be F1 (k) and the first nr block rows of Up (k+1) be
F2 (k+1). For example, if p=4 and n=2, then nr =2 is used. In this case,

F1 (k)=$ C(k)
C(k+1)G(k+1, k)%T−1(k),

F2 (k+1)=$ C(k+1)
C(k+2)G(k+2, k+1)%T−1(k+1). (A2)

Thus,

F+
1 (k)F2 (k+1)=T(k)D−1

1 D2T−1(k+1), (A3)

where

D1 =CT(k)C(k)+GT(k+1, k)CT(k)C(k)G(k+1, k),

D2 =CT(k+1)C(k+1)+GT(k+2, k+1)CT(k+1)C(k+1)G(k+2, k+1). (A4)

To ensure the existence of F+
1 (k), apparently D1 must be invertible.

A.2.       

The varying transition matrices can be found using an ensemble of p states since
G(k+1, k) satisfies a matrix equation given by

X(k+1)=G(k+1, k)X(k), (A5)

where

X(k)= [x1 (k) x2 (k), . . . , xp (k)]

is the state matrix at moment k and

X(k+1)= [x1 (k+1) x2 (k+1), . . . , xp (k+1)]
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is the state matrix at moment k+1. The true transition matrix can be found by

G(k+1, k)=X(k+1)X−1(k). (A6)

To ensure the existence of X−1(k), the p initial states must be independent of one another.
In the example used in section 5, to evaluate the true transition matrices, four initial
conditions formed a unit matrix, that is,

X(0)= [x1 (0) x2 (0) x3 (0) x4 (0)]= I. (A7)

The four state sequences were numerically found by the Runge–Kutta integrator.


